Search results for "density-functional calculation"

showing 2 items of 2 documents

Pairing energy effects in cyanide complexes of CpCrIII

1999

International audience; The steric and electronic factors responsible for the reactivity differences between CN and Cl complexes of CpCrIII were examined by DFT/B3LYP computational techniques. The energy difference between quadruplet and doublet [CpCr(CN)2(PH3)], ΔED–Q, was calculated to be 21.2 kcal mol−1 with the LanL2DZ basis set. Although the high-spin configuration is still the ground state for the cyanide complex, the energy gap is 8.7 kcal mol−1 less than that found for the corresponding chloride species. The difference between quadruplet [CpCr(CN)2(PH3)] and doublet [CpCr(CN)2(PH3)2] less free PH3, ΔECr–P, is also smaller than for the Cl system. The components of ΔECr–P for CN and C…

ChromiumSteric effectsElectronic structureCyanidesSpin statesCyanideElectronic structureDensity-functional calculationInorganic Chemistrychemistry.chemical_compoundCrystallographychemistryComputational chemistryPairingSpin state[CHIM.COOR]Chemical Sciences/Coordination chemistryReactivity (chemistry)Ground stateBasis set
researchProduct

Lithium adsorption at prismatic graphite surfaces enhances interlayer cohesion

2013

Abstract We use density functional calculations to determine the binding sites and binding energies of Li + at graphene edges and prismatic graphite surfaces. Binding is favorable at bare and carbonyl terminated surfaces, but not favorable at hydrogen terminated surfaces. These findings have implications for the exfoliation of graphitic anodes in lithium-ion batteries that happens if solute and solvent co-intercalate. First, specific adsorption facilitates desolvation of Li + . Second, chemisorption lowers the surface energy by about 1 J m −2 prismatic surface area, and gives graphite additional stability against exfoliation. The results offer an explanation for experiments that consistentl…

anodeMaterials scienceHydrogenBinding energyInorganic chemistryEnergy Engineering and Power Technologychemistry.chemical_elementsurface chemistry02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionAdsorptionlawGraphiteElectrical and Electronic EngineeringPhysical and Theoretical Chemistryta114graphiteRenewable Energy Sustainability and the EnvironmentGrapheneexfoliation021001 nanoscience & nanotechnologySurface energy0104 chemical sciencesSolventdensity-functional calculationchemistrylithiumChemisorption0210 nano-technologyJournal of Power Sources
researchProduct